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Abstract

Missing data is a common problem in real-world settings and for this reason has attracted
significant attention in the statistical literature. We propose a flexible framework based
on formal optimization to impute missing data with mixed continuous and categorical
variables. This framework can readily incorporate various predictive models including K-
nearest neighbors, support vector machines, and decision tree based methods, and can
be adapted for multiple imputation. We derive fast first-order methods that obtain high
quality solutions in seconds following a general imputation algorithm opt.impute presented
in this paper. We demonstrate that our proposed method improves out-of-sample accuracy
in large-scale computational experiments across a sample of 84 data sets taken from the
UCI Machine Learning Repository. In all scenarios of missing at random mechanisms and
various missing percentages, opt.impute produces the best overall imputation in most
data sets benchmarked against five other methods: mean impute, K-nearest neighbors,
iterative knn, Bayesian PCA, and predictive-mean matching, with an average reduction in
mean absolute error of 8.3% against the best cross-validated benchmark method. Moreover,
opt.impute leads to improved out-of-sample performance of learning algorithms trained
using the imputed data, demonstrated by computational experiments on 10 downstream
tasks. For models trained using opt.impute single imputations with 50% data missing,
the average out-of-sample R2 is 0.339 in the regression tasks and the average out-of-sample
accuracy is 86.1% in the classification tasks, compared to 0.315 and 84.4% for the best
cross-validated benchmark method. In the multiple imputation setting, downstream models
trained using opt.impute obtain a statistically significant improvement over models trained
using multivariate imputation by chained equations (mice) in 8/10 missing data scenarios
considered.

Keywords: missing data imputation, K-NN, SVM, optimal decision trees

1. Introduction

The missing data problem is arguably the most common issue encountered by machine
learning practitioners when analyzing real-world data. In many applications ranging from
gene expression in computational biology to survey responses in social sciences, missing data
is present to various degrees. As many statistical models and machine learning algorithms
rely on complete data sets, it is key to handle the missing data appropriately.
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Method Name Category Software Reference
Mean impute (mean) Mean Little and Rubin (1987)
Expectation-Maximization (EM) EM Dempster et al. (1977)
EM with Mixture of Gaussians and Multinomials EM Ghahramani and Jordan (1994)
EM with Bootstrapping EM Amelia II Honaker et al. (2011)
K-Nearest Neighbors (knn) K-NN impute Troyanskaya et al. (2001)
Sequential K-Nearest Neighbors K-NN Kim et al. (2004)
Iterative K-Nearest Neighbors K-NN Caruana (2001); Brás and Menezes (2007)
Support Vector Regression SVR Wang et al. (2006)
Predictive-Mean Matching (pmm) LS MICE Buuren and Groothuis-Oudshoorn (2011)
Least Squares LS Bø et al. (2004)
Sequential Regression Multivariate Imputation LS Raghunathan et al. (2001)
Local-Least Squares LS Kim et al. (2005)
Sequential Local-Least Squares LS Zhang et al. (2008)
Iterative Local-Least Squares LS Cai et al. (2006)
Sequential Regression Trees Tree MICE Burgette and Reiter (2010)
Sequential Random Forest Tree missForest Stekhoven and Bühlmann (2012)
Singular Value Decomposition SVD Troyanskaya et al. (2001)
Bayesian Principal Component Analysis SVD pcaMethods Oba et al. (2003); Mohamed et al. (2009)
Factor Analysis Model for Mixed Data FA Khan et al. (2010)

Table 1: List of Imputation Methods

In some cases, simple approaches may suffice to handle missing data. For example,
complete-case analysis uses only the data that is fully known and omits all observations with
missing values to conduct statistical analysis. This works well if only a few observations
contain missing values, and when the data is missing completely at random, complete-
case analysis does not lead to biased results (Little and Rubin, 1987). Alternately, some
machine learning algorithms naturally account for missing data, and there is no need for
preprocessing. For instance, CART and K-means have been adapted for problems with
missing data (Breiman et al., 1984; Wagstaff, 2004).

In many other situations, missing values need to be imputed prior to running statistical
analyses on the complete data set. The benefit of the latter approach is that once a set
(or multiple sets) of complete data has been generated, practitioners can easily apply their
own learning algorithms to the imputed data set. We focus on methods for missing data
imputation in this paper.

Concretely, assume that we are given data X = {x1, . . . ,xn} with missing entries
xid, (i, d) ∈M. The objective is to impute the values of the missing data that resemble the
underlying complete data as closely as possible. This way, when one conducts statistical
inference or pattern recognition using machine learning methods on the imputed data, the
results should be similar to those obtained if full data were given. We outline some of the
state-of-the-art methods for imputation in Table 1 and describe them briefly below. Part
of the list is adapted from a review paper by Liew et al. (2011).

1.1 Related Work

The simplest method is mean impute, in which each missing value xid is imputed as the mean
of all observed values in dimension d. Mean impute underestimates the variance, ignores
the correlation between the features, and thus often leads to poor imputation (Little and
Rubin, 1987).
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Joint modeling asserts some joint distribution on the entire data set. It assumes a para-
metric density function (e.g., multivariate normal) on the data given model parameters.
In practice, model parameters are typically estimated using an Expectation-Maximization
(EM) approach. It finds a solution (often non-optimal) of missing values and model pa-
rameters to maximize the likelihood function. Many software tools such as the R package
Amelia 2 implement the EM method with bootstrapping, assuming that the data is drawn
from a multivariate normal distribution (Honaker et al., 2011). Joint modeling provides
useful theoretical properties but lacks the flexibility for processing data types seen in many
real applications (Van Buuren, 2007). For example, when the data includes continuous and
categorical variable types, standard multivariate density functions often fail at modeling
the complexity of mixed data types. However, under the assumption that the categorical
variables are independent, we can use mixture models of Gaussians and Multinomials for
imputation (Ghahramani and Jordan, 1994).

In contrast to joint modeling, fully conditional specification is a more flexible alterna-
tive where one specifies the conditional model for each variable; it is especially useful in
mixed data types (Van Buuren, 2007). To generalize to multivariate settings, a chained
equation process — initializing using random sampling and conducting univariate imputa-
tions sequentially until convergence — is typically used (Buuren and Groothuis-Oudshoorn,
2011). Each iteration is a Gibbs sampler that draws from the conditional distribution on
the imputed values.

A simple example of conditional specification is based on regression. Least-Squares (LS)
imputation constructs single univariate regressions, regressing features with missing values
on all of the other dimensions in the data. Each missing value xid is then imputed as the
weighted average of these regression predictions (Bø et al., 2004; Raghunathan et al., 2001).
Alternatively, in the Predictive-Mean Matching method (pmm), imputations are random
samples drawn from a set of observed values close to regression predictions (Buuren and
Groothuis-Oudshoorn, 2011). Imputation methods that use Support Vector Regression in
place of LS for the regression step have also been explored (Wang et al., 2006).

When there is non-linear relationship between the variables, linear regression based
imputation may perform poorly. Burgette and Reiter (2010) propose using Classification
and Regression Trees (CART) as the conditional model for imputation. Extensions to
random forests have also shown promising results (Stekhoven and Bühlmann, 2012). These
decision tree based imputation methods are non-parametric approaches that do not rely
upon distributional assumptions on the data.

One of the most commonly used non-parametric approaches is K-Nearest Neighbors (K-
NN) based imputation. This method imputes each missing entry xid as the mean of the dth
dimension of theK-nearest neighbors that have observed values in dimension d (Troyanskaya
et al., 2001). Some extensions of K-NN include sequential K-NN, which starts by imputing
missing values from observations with the fewest missing dimensions and continues imputing
the next unknown entries reusing the previously imputed values (Kim et al., 2004). Iterative
K-NN uses an iterative process to refine the estimates and choose the nearest neighbors
based on the estimates from the previous iteration (Caruana, 2001; Brás and Menezes,
2007). The Local-Least Squares method combines ideas from K-NN and LS, imputing each
missing value xid using regression models trained on the K-nearest neighbors of the point
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xi (Kim et al., 2005). Sequential and iterative variations of Local-Least Squares resemble
their K-NN imputation counterparts (Zhang et al., 2008; Cai et al., 2006).

Low dimensional representation-based imputation assumes that the data represents a
noisy observation of a linear combination of a small set of principal components or factor
variables. In the basic method, singular value decomposition (SVD) is used on the entire
data set to determine the principal eigenvectors. The missing values are imputed as a
linear combination of these eigenvectors. This process is iteratively repeated until conver-
gence (Troyanskaya et al., 2001; Mazumder et al., 2010). Bayesian Principal Component
Analysis is similar to SVD imputation but extends the method to incorporate information
from a prior distribution on the model parameters (Oba et al., 2003; Mohamed et al., 2009).
Some recent development of a variant of the EM algorithm for factor analysis also provides
a missing data imputation method for mixed data (Khan et al., 2010).

Thus far, we have only discussed methods for single imputation which generate one set
of completed data that will be used for further statistical analyses. Multiple imputation, on
the other hand, imputes multiple times (each set is possibly different), runs the statistical
analyses on each, and pools the results (Little and Rubin, 1987). Such method is able to
capture the variability in the missing data and therefore generate potentially more accurate
estimates to the larger statistical problem. However, multiple imputation methods are
slower and require pooling results, which may not be appropriate for certain applications.

Within the multiple imputation framework, the procedure for generating multiple es-
timates of missing values varies. Multivariate imputation by chained equations (mice), a
popular multiple imputation method, generates estimates using: predictive mean match-
ing, Bayesian linear regression, logistic regression, and others (Buuren and Groothuis-
Oudshoorn, 2011). In all cases, the method initializes using random sampling and conducts
univariate imputations sequentially until convergence. Each iteration is a Gibbs sampler
that draws from the conditional distribution on the imputed values.

Because of its importance, missing data imputation remains an active research area.
Although there are numerous methods, many of them have serious shortcomings. Joint
modeling methods are not as effective when data sets violate normality assumptions, and
a näıve implementation often crashes during the computation of a singular covariance ma-
trix (Honaker et al., 2011). Some conditional specification methods such as pmm are practi-
cally reliable, but lack theoretical foundation and have no explicit formulation as an opti-
mization problem. This stands in stark contrast to other areas of machine learning, where
statistical models and optimization problems are deeply intertwined.

Evidence from recent literature suggests that recent advances in optimization have
driven significant progress in machine learning. Integer and convex optimization have been
applied successfully to median and sparse regression problems (Bertsimas and Van Parys,
2017; Bertsimas and Mazumder, 2014). Recent work on Optimal Decision Trees for clas-
sification leverages integer and robust optimization (Bertsimas and Dunn, 2017; Bertsimas
et al., 2017). In this paper, we reconsider the missing data problem from this perspective, in
order to develop optimization-based methods for imputation with improved out-of-sample
performance.
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1.2 Contributions

We summarize our contributions in this paper below:

1. We pose the missing data problem under a general optimization framework. The
framework produces an optimization problem with a predictive model-based cost func-
tion that explicitly handles both continuous and categorical variables and can be used
to generate multiple imputations. We present three cost functions derived from K-
nearest neighbors, support vector machines, and optimal decision tree models. This
optimization perspective provides fresh insight into the classical missing data problem
and leads to new algorithms for more accurate data imputation.

2. For each imputation model, we derive first-order methods to find high-quality solutions
to the missing data problem following a general imputation algorithm opt.impute pre-
sented in this paper. These methods easily scale to data sets with n in the 100,000s
and p in the 1,000s on a standard desktop computer and converge within a few it-
erations. In addition, the first-order methods are robust and reliable for arbitrary
missing patterns and mixed data types.

3. We evaluate the methods in computational experiments using 84 real-world data
sets taken from the UCI Machine Learning Repository. Benchmarked against exist-
ing imputation methods including mean impute, K-nearest neighbors, iterative knn,
Bayesian PCA, and predictive-mean matching, opt.impute produces the best overall
imputation in more than 75.8% of all data sets, and results in an average reduction
in mean absolute error of 8.3% against the best cross-validated benchmark method.

4. We demonstrate that the improved data imputations generated by opt.impute give
rise to improved performance on 10 downstream classification and regression tasks.
With 50% of missing data, classification models trained on data imputed via opt.impute
have an average testing accuracy of 86.1% compared to 84.4% for the best cross-
validated benchmark method. In addition, regression models trained on data imputed
via opt.impute have an average out-of-sample R2 value of 0.339 compared to 0.315
for the best cross-validated benchmark method. Finally, downstream models trained
on multiple imputations produced by opt.impute significantly outperform multiple
imputations produced by mice in 3/5 missing data scenarios for classification and 5/5
scenarios for regression.

The structure of the paper is as follows. In Section 2, we formulate the missing
data imputation problem as an optimization problem, present a general first-order method
opt.impute that can be used to find high-quality solutions, and derive the algorithms for
each model: K-NN, SVM, and trees. We also discuss a cross-validation procedure and
extensions of opt.impute to multiple imputation. In Section 3, we compare the imputation
quality and performance on downstream tasks of opt.impute to benchmark imputation
methods on a wide range of real data sets. In Section 4, we discuss the benefits from
adopting such framework and suggest areas for future work. We conclude in Section 5.
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2. Methods for Optimal Imputation

In this section, we pose the missing data problem as an optimization problem in which we
optimize the missing values in all data points and dimensions simultaneously. We introduce
a general imputation framework on mixed data (continuous and categorical) based upon
first-order methods applied to this problem. Within this framework, we use K-nearest
neighbors, SVM, and decision tree based imputation as examples to define three specific
optimization problems. For each problem, we present two first-order methods used to find
high-quality solutions: block coordinate descent (BCD) and coordinate descent (CD).

Let X = {xi}ni=1 be the data set given with p variables. Without loss of generality,
we assume each data vector xi contains continuous variables indexed by d ∈ {1, 2, . . . , p0}
and categorical variables indexed by d ∈ {p0 + 1, . . . , p0 + p1} with p0 + p1 = p. As a
pre-processing step, we transform all continuous variables to have unit standard deviation.
We leave all categorical variables unchanged, and assume the dth categorical variable d ∈
{p0 + 1, . . . , p0 + p1} takes values among kd classes. Note that if all data is continuous
p0 = 0, while if all data is categorical p1 = 0. The missing and known values are specified
by the following sets:

M0 = {(i, d) : entry xid is missing, 1 ≤ d ≤ p0},
N0 = {(i, d) : entry xid is known, 1 ≤ d ≤ p0},
M1 = {(i, d) : entry xid is missing, p0 + 1 ≤ d ≤ p0 + p1},
N1 = {(i, d) : entry xid is known, p0 + 1 ≤ d ≤ p0 + p1}.

We also refer to the full missing pattern asM :=M0 ∪M1. Let W ∈ Rn×p0 be the matrix
of imputed continuous values, where wid is the imputed value for entry xid, d ∈ {1, . . . , p0}.
Similarly, let V ∈ {1, . . . , k1}×. . .×{1, . . . , kp1} be the matrix of imputed categorical values,
where vid is the imputed value for entry xid, d ∈ {p0 + 1, . . . , p0 + p1}. We refer to the full
imputation for observation xi as (wi,vi) in the following sections.

2.1 General Problem Formulation

As the task is to impute the missing values, for each model the key decision variables are
the imputed values {wid : (i, d) ∈M0} and {vid : (i, d) ∈M1}. We also introduce auxiliary
decision variables as well; denote these as U. For instance, in a K-NN based approach,
indicator variables zij , 1 ≤ i, j ≤ n are introduced to identify the neighbor assignment for
each pair of points xi, xj . For a given set of imputed values and a given model, there
is a cost function c(·) associated with it. Our goal is to solve the following optimization
problem:

min c(U,W,V;X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

(U,W,V) ∈ U ,

(1)

where U is the set of all feasible combinations (U,W,V) of auxiliary vectors and imputa-
tions. For example, in a K-NN based approach, this includes the constraints that each
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point has exactly K neighbors and the assignment variables are binary. We list the aux-
iliary variables and cost functions corresponding to each of the imputation models K-NN,
SVM, and trees in Table 2. Note that the cost function can be different for continuous
and categorical variables. We can introduce a parameter that controls the relative contri-
bution to the cost between the continuous and categorical variables, or scale continuous
variables appropriately. For the remainder of the paper the latter is assumed for simplicity
of notation.

Model U c(U,W,V;X)

K-NN Z
∑
i∈I

n∑
j=1

zij

[ p0∑
d=1

(wid − wjd)2 +

p0+p1∑
d=p0+1

1{vid 6=vjd}

]
SVM [β,θ,γ,γ∗, ξ] 1

2(‖β‖2H + ‖θ‖2H) + C
n∑
i=1

 p0∑
d=1

(γid + γ∗id) +

p0+p1∑
d=p0+1

ξid


Trees T

n∑
i=1

n∑
j=1

[ p0∑
d=1

tdij(wid − wjd)2 +

p0+p1∑
d=p0+1

tdij1{vid 6=vjd}

]
Table 2: Variables and cost functions for each imputation model. Variables for K-NN,

SVM, and trees are defined in Sections 2.3, 2.4, and 2.5 respectively.

This problem is non-convex for K-NN, SVM, and tree models. To obtain a certifiable
optimal solution, one can reformulate the problem with integer variables and solve it using
a mixed integer solver. We ran computational experiments and found that solving such
mixed integer problems requires a long time to reach a certifiably optimal solution. As
a result, we present a general imputation algorithm opt.impute which approximates the
solution to Problem (1) very fast using first-order methods.

2.2 First-Order Method for the General Problem

To obtain high-quality solutions to Problem (1), we can use first-order methods with random
warm starts. In particular, we will focus on block coordinate descent (BCD) and coordinate
descent (CD) (Bertsekas, 1999). Algorithm 1, which we refer to as opt.impute, implements
BCD or CD for Problem (1). The variables U,W,V, and X as well as the cost function c(·)
are summarized in Table 2 for K-NN, SVM, and trees. The detailed solution methods for
Problems (2), (3), (4), and (5) for K-NN, SVM, and tree imputation models are described
in Sections 2.3-2.5, respectively.

By construction, the objective function value strictly decreases by at least δ0 until
termination. It follows that the number of steps needed for the algorithm to terminate is
d 1
δ0
c(U0,W0,V0;X)e, where W0,V0 are the initialization values, X is data, and U0 is the

argmin in Equation (2). However, the algorithm is not guaranteed to find a global minimum
for Problem (1) (Wright, 2015).

In the next sections, we discuss three example models and the optimization problem
formulations. For each model and each first-order method, we derive the specific updates
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Algorithm 1 opt.impute

Input: X ∈ Rn×p0 × {1, . . . , k1} × . . .× {1, . . . , kp1},
a data matrix with some missing
entries M = {(i, d) : xid is missing},
δ0 > 0, and warm start W0 ∈ Rn×p0 ,
V0 ∈ {1, . . . , k1} × . . .× {1, . . . , kp1}.

Output: Ximp a full matrix with imputed values.
Procedure:

Initialize δ ←∞, Wold ←W0, Vold ← V0.
while δ > δ0 do

1 Update U∗ using model dependent information:

U∗ ← arg min
U

c(U,Wold,Vold;X)

s.t. (U,Wold,Vold) ∈ U .
(2)

2 Update the imputation W∗, V∗, following either:

2a block coordinate descent (BCD):

W∗,V∗ ← arg min
W,V

c(U∗,W,V;X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

(U∗,W,V) ∈ U ,

(3)

or

2b coordinate descent (CD):

w∗jr ← arg min
wjr

c(U∗,W,V;X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

wid = w∗id (i, d) ∈M0\(j, r),
vid = v∗id (i, d) ∈M1,

(U∗,W,V) ∈ U ,

(4)

v∗jr ← arg min
vjr

c(U∗,W,V;X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

wid = w∗id (i, d) ∈M0,

vid = v∗id (i, d) ∈M1\(j, r),
(U∗,W,V) ∈ U .

(5)

3 δ ← c(U∗,W∗,V∗;X)− c(Uold,Wold,Vold;X).
4 (Uold,Wold,Vold)← (U∗,W∗,V∗).

end while
Ximp ← [W∗;V∗]
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for U,W,V that we use in our optimization-based imputation procedure. After, we describe
a cross-validation procedure to select the specific model and parameters for the imputation.

2.3 K-NN Based Imputation

We first define a distance metric between rows (wi,vi) and (wj ,vj) as

dij :=

p0∑
d=1

(wid − wjd)2 +

p0+p1∑
d=p0+1

1{vid 6=vjd}. (6)

Next, we introduce the binary variables:

zij =


1, if (wj ,vj) is among the K-nearest neighbors of (wi,vi)

with respect to distance metric (6),

0, otherwise.

We further define the set of indices I := {i : xi has at least one missing coordinate}. The
optimization problem for the K-NN based imputation model is:

min c(Z,W,V;X) :=
∑
i∈I

n∑
j=1

zij

[ p0∑
d=1

(wid − wjd)2 +

p0+p1∑
d=p0+1

1{vid 6=vjd}

]
s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

zii = 0 i ∈ I,
n∑
j=1

zij = K i ∈ I,

Z ∈ {0, 1}|I|×n·

(7)

By optimality, it follows that zij = 1 if and only if (wj ,vj) is among the K-nearest
neighbors of (wi,vi). Therefore, solving Problem (7) produces the missing value imputa-
tion which minimizes the sum of distances from each point (wi,vi), i ∈ I to its K-nearest
neighbors. Note that the relation 1{vid 6=vjd} can be modeled with binary variables. Prob-
lem (7) is a nonconvex optimization problem with both continuous and binary variables.
Correspondingly, it is difficult to solve to provable optimality, even if the data set contains
continuous variables only.

Next, we describe the updates in Algorithm 1 for K-NN based imputation. We refer to
this specific imputation method as opt.knn.
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2.3.1 opt.knn

In step 1 , to update the auxiliary variables Z, first fix all imputed values W, V. Prob-
lem (2) decomposes by i ∈ I into the assignment problems:

min
zi

n∑
j=1

zijdij

s.t. zii = 0,
n∑
j=1

zij = K,

zi ∈ {0, 1}n·

(8)

The optimal solution to Problem (8) can be found using a simple sorting procedure on the
distances {dij}nj=1. For each i ∈ I, we find the K-nearest neighbors of (wi,vi) and set
zij = 1 for these neighbors, zij = 0, otherwise.

Next, we fix Z and update the imputed values W,V using either BCD or CD. In step 2a ,
the BCD update, Problem (3) decomposes by dimension d = 1, . . . , p. For each continuous
dimension d = 1, . . . , p0, we consider the following quadratic optimization problem:

min
wd

∑
i∈I

n∑
j=1

zij(wid − wjd)2

s.t. wid = xid (i, d) ∈ N0,

where wd ∈ Rn are the imputed values in the dth dimension. Taking partial derivative of
the objective function with respect to wid for some missing entry (i, d) ∈M0 and setting it
to zero, we obtain after some simplifications:

(K +
∑
j∈I

zji)wid −
∑

(j,d)∈M0

(zij + zji)wjd −
∑

(j,d)∈N0

(zij + 1{j∈I}zji)xjd = 0. (9)

For each continuous dimension d, we have a system of equations of the form (9) which we
can solve to determine the optimal imputed values wid, (i, d) ∈ M0. To simplify notation,
suppose that the missing values for dimension d are w̃ := (w̃1d, . . . , w̃ad) and the known
values are x̃ := (x̃(a+1)d, . . . , x̃nd). Then, the set of optimal imputed missing values w̃ is the
solution to the linear system Qw̃ = Rx̃, where

Q =



K +
∑
j∈I

zj1 − 2z11 −z12 − z21 . . . −z1a − za1

−z21 − z12 K +
∑
j∈I

zj2 − 2z22 . . . −z2a − za2

...
. . .

...

−za1 − z1a −za2 − z2a . . . K +
∑
j∈I

zja − 2zaa


,
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R =

z1(a+1) + 1{(a+1)∈I}z(a+1)1 . . . z1n + 1{n∈I}zn1
...

...
za(a+1) + 1{(a+1)∈I}z(a+1)a . . . zan + 1{n∈I}zna

 .
Note that when K is sufficiently large, the matrix Q is positive semidefinite and therefore

invertible. If Q is singular, then we may add a small positive perturbation to the diagonal
of Q so that the matrix becomes positive semidefinite. Therefore, without loss of generality
there is a closed-form solution w̃ = Q−1Rx̃ to this system of equations for each continuous
dimension d.

In order to update V, we solve the following integer linear optimization problem for
each categorical dimension d = (p0 + 1), . . . , p:

min
vd

∑
i∈I

n∑
j=1

zijyij

s.t. vid = xid (i, d) ∈ N1,

vid − vjd ≤ yijkd i = 1, . . . , n, j = 1, . . . , n,

vjd − vid ≤ yijkd i = 1, . . . , n, j = 1, . . . , n,

yij ∈ {0, 1}n×n,

where vd ∈ {1, . . . , kd}n are the imputed values for the dth dimension. Here, the indicator
variables yij take values equal to 1{vjd 6=vjd} in the optimal solution.

In step 2b , following the CD method, we update the missing imputed values one at a
time. Each wid, (i, d) ∈M0 is imputed as the minimizer of the following:

min
wid

n∑
j=1

zij(wid − wjd)2 +
∑
j∈I

zji(wjd − wid)2.

Solving the above gives

wid =

∑n
j=1 zijwjd +

∑
j∈I zjiwjd

K +
∑

j∈I zji
. (10)

We can interpret the missing value imputation (10) as a weighted average of the K
nearest neighbors of xi, along with all points xj which include xi as a neighbor. Similarly,
each categorical variable vid, (i, d) ∈M1 is imputed as the minimizer of the following:

min
vid

n∑
j=1

zij1{vid 6=vjd} +
∑
j∈I

zji1{vjd 6=vjd}.

The solution is
vid = mode

({
{vjd : zij = 1}, {vjd : zji = 1}

})
.

Here, we set vid to be the highest frequency category among the K nearest neighbors of xi,
along with all points xj which include xi as a nearest neighbor. In practice, we use this
update for vid, (i, d) ∈ M1 in place of the update for V in BCD because it is much faster
computationally.

11



Bertsimas, Pawlowski, and Zhuo

2.4 Mixed SVM Based Imputation

In this section, we consider a second model for imputation, based upon SVM regression
for imputing continuous features and SVM classification for imputing categorical features.
First, define ṽi ∈ {−1, 1}p2 to be a dummy encoded representation of vi, where p2 =∑p0+p1

d=p0+1 kd − p1. Let ṽfixedid , (i, d) ∈ N2 be the known dummy encoded values. For each

continuous feature d ∈ {1, . . . , p0}, let (βd, βd0) ∈ Rp0+p2+1 be the coefficients for an SVM
regression model regressing feature d on the other features with the dummy encoding. Let
(θd, θd0) ∈ Rp0+p2+1 be the coefficients for an SVM classification model predicting dummy
feature d based upon the other features. Note that it is also possible to use a multi-
class SVM model to predict each categorical feature directly, as described by Crammer
and Singer (2001), using parameters of the form M ∈ Rkd×(p0+p2+1) for each feature d ∈
{p0 + 1, . . . , p0 + p1}. In this case, we would keep the dummy encoded decision variables
as covariates to predict the other features and add constraints relating vid, (i, d) ∈ M1

and ṽid, (i, d) ∈ M2. For illustrative purposes and simplicity of notation, we present the
formulation using binary SVM to predict each dummy variable d.

We consider the following optimization problem:

min c([β,θ],W, Ṽ;X) :=
1

2

(
‖θ‖2 + ‖β‖2

)
+ C

(
n∑
i=1

p0∑
d=1

(γid + γ∗id) +
n∑
i=1

p0+p1∑
d=p0+1

ξid


s.t. xid = wid (i, d) ∈ N0,

ṽid = ṽfixedid (i, d) ∈ N2,

βdd = 0 d = 1, . . . , p0,

θdd = 0 d = 1, . . . , p2,

γid ≥ wid − (βTd

[
wi

ṽi

]
+ βd0)− ε d = 1, . . . , p0, i = 1 . . . , n,

γ∗id ≥ (βTd

[
wi

ṽi

]
+ βd0)− wid − ε d = 1, . . . , p0, i = 1 . . . , n,

ξid ≥ 1− ṽid(θTd
[
wi

ṽi

]
+ θd0) d = 1, . . . , p2, i = 1 . . . , n,

γid ≥ 0 d = 1, . . . , p0, i = 1 . . . , n,

γ∗id ≥ 0 d = 1, . . . , p0, i = 1 . . . , n,

ξid ≥ 0 d = 1, . . . , p2, i = 1 . . . , n,

ṽid ∈ {−1, 1} d = 1, . . . , p2, i = 1 . . . , n.
(11)

This formulation is based upon SVM with a linear kernel; however we can extend Prob-
lem (11) to arbitrary kernels, including the multi-class cases, using the modified objective
function

c([β,θ],W,V;X) :=
1

2
(‖β‖2H + ‖θ‖2H) + C

 n∑
i=1

p0∑
d=1

(γid + γ∗id) +
n∑
i=1

p0+p1∑
d=p0+1

ξid

 ,

where ‖ · ‖H is the norm in a given Reproducing Kernel Hilbert Space H.
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Another important aspect of Problem (11) is the compound objective function, which is
the summation of objective functions derived from both SVM regression and SVM classifi-
cation methods. Observe that if we fix a single imputed entry wid or ṽid, the contribution to

the objective function scales linearly as (βTd

[
wi

ṽi

]
+ βd0) if d is continuous or scales linearly

as (θTd

[
wi

ṽi

]
+ θd0) if d is categorical. This is desirable because we do not wish to weight

continuous and categorical variables unequally in our imputation. Next, we describe the
updates in Algorithm 1 for mixed SVM based imputation, which we refer to as opt.svm.

2.4.1 opt.svm

In step 1 , we fix the imputed values W,V and update the auxiliary variables [β,β0,θ,θ0].
Independent of the choice of kernel, Problem (2) decomposes by dimension p into p0 SVM
regression problems and p2 SVM classification problems for the categorical variables. For
each continuous feature d ∈ {1, . . . , p0}, we update βd, βd0 by solving

min
1

2
‖β‖2 + C

n∑
i=1

(γid + γ∗id)

s.t. βdd = 0

γid ≥ wid − (βTd

[
wi

ṽi

]
+ βd0)− ε i = 1 . . . , n,

γ∗id ≥ (βTd

[
wi

ṽi

]
+ βd0)− wid − ε i = 1 . . . , n,

γid ≥ 0 i = 1, . . . , n,

γ∗id ≥ 0 i = 1, . . . , n.

(12)

Similarly, for each dummy feature d ∈ {p0 + 1, . . . , p0 + p2}, we update θd, θd0 by solving

min
1

2
‖θ‖2 + C

n∑
i=1

ξid

s.t. θdd = 0

ξid ≥ 1− ṽid(θTd
[
wi

ṽi

]
+ θd0) i = 1 . . . , n,

ξid ≥ 0 i = 1, . . . , n.

(13)

Taking the Lagrangian duals, both Problems (12) and (13) can be reformulated as quadratic
optimization problems which can be solved efficiently (Cortes and Vapnik, 1995).

Next, we fix the auxiliary variables [β,β0,θ,θ0] and update the imputed values W,V

using BCD or CD. In step 2a , Problem (2) decomposes by observation i into n nonlinear
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integer optimization problems. For each i we solve

min
wi,ṽi

p0∑
d=1

(γid + γ∗id) +

p0+p1∑
d=p0+1

ξid

s.t. xid = wid (i, d) ∈ N0,

γid ≥ wid − (βTd

[
wi

ṽi

]
+ βd0)− ε d = 1, . . . , p0,

γ∗id ≥ (βTd

[
wi

ṽi

]
+ βd0)− wid − ε d = 1, . . . , p0,

ξid ≥ 1− ṽid(θTd
[
wi

ṽi

]
+ θd0) d = 1, . . . , p2,

γid ≥ 0 d = 1, . . . , p0,

γ∗id ≥ 0 d = 1, . . . , p0,

ξid ≥ 0 d = 1, . . . , p2,

(14)

where (wi, ṽi) ∈ Rp0 × {−1, 1}p2 is the imputation for observation xi. Note that if all
features are continuous, Problem (14) reduces to a linear optimization problem. Because
we are using the dummy encoding in this formulation, it is possible to obtain an imputation
in which multiple classes are selected for a single categorical entry. In this case, when
opt.svm terminates, we select the imputation among the set of potential candidates which
minimizes the objective function of Problem (14).

In step 2b , we update the imputed values one at a time. To update wid, (i, d) ∈ M0,
we solve the one-dimensional linear optimization problem:

min
wid

p0∑
d=1

(γid + γ∗id) +

p0+p1∑
d=p0+1

ξid

s.t. γid ≥ wid − (βTd

[
wi

ṽi

]
+ βd0)− ε d = 1, . . . , p0,

γ∗id ≥ (βTd

[
wi

ṽi

]
+ βd0)− wid − ε d = 1, . . . , p0,

ξid ≥ 1− ṽid(θTd
[
wi

ṽi

]
+ θd0) d = 1, . . . , p2,

γid ≥ 0 d = 1, . . . , p0,

γ∗id ≥ 0 d = 1, . . . , p0,

ξid ≥ 0 d = 1, . . . , p2.

We update ṽid, (i, d) 6∈ N2 by solving the binary optimization problem:

min
ṽid∈{−1,1}

n∑
i=1

p0∑
d=1

(
max{wid − (βTd

[
wi

ṽi

]
+ βd0)− ε, 0}+ max{(βTd

[
wi

ṽi

]
+ βd0)− wid − ε, 0}

)
+

n∑
i=1

p2∑
d=1

(
1− ṽid(θTd

[
wi

ṽi

]
+ θd0)

)
.
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2.5 Tree Based Imputation

Finally, we consider an imputation model based on classification and regression trees. For
each dimension we train a decision tree to predict the missing values, using the other
features as covariates. We train regression trees to predict each of the continuous variables
and classification trees to predict each of the categorical variables. Given a regression tree
for continuous dimension d, we will impute xid, (i, d) ∈ M0 to be the mean in dimension d
of all points in the same leaf node as xi. Similarly, given a classification tree for dimension
d, we will impute xid, (i, d) ∈ M1 to be the mode in dimension d of all points in the same
leaf node as xi.

For general prediction tasks, we can use greedy (Breiman et al., 1984) or globally opti-
mal (Bertsimas and Dunn, 2017) solution methods to train the decision trees. In this case,
we consider the latter approach because it admits a clear optimization model with mixed
integer decision variables which fits into our framework for imputation. For each dimension
d, let Td ∈ {0, 1}n×n denote the set of indicator variables

tdij =


1, if (wi,vi), (wj ,vj) are in the same leaf node

of the decision tree for dimension d,
0, otherwise.

Let (Td,W,V) ∈ T d denote the set of optimal decision tree constraints for dimension d as
described in (Bertsimas and Dunn, 2017). We consider the following optimization problem:

min c(T,W,V;X) :=
n∑
i=1

n∑
j=1

[ p0∑
d=1

tdij(wid − wjd)2 +

p0+p1∑
d=p0+1

tdij1{vid 6=vjd}

]
s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

(Td,W,V) ∈ T d d = 1, . . . , p,

(15)

Next, we describe the updates in Algorithm 1 for decision tree based imputation, which
we refer to as opt.tree.

2.5.1 opt.tree

In step 1 , we fix the imputed values W,V and update the decision tree variables T.
For each continuous feature, we fit a regression tree to predict wd based upon the other
features. Similarly, for each categorical feature, we fit a classification tree to predict vd

based upon the other features. In practice, we may use greedy or optimal methods to find
these trees; however, if we use greedy trees then the objective function value c(T,W,V;X)
is not guaranteed to be monotonically decreasing over the course of the algorithm.

Next, we fix T and update the imputed values W,V using BCD or CD. In step 2a ,
Problem (3) decomposes by dimension into p0 quadratic optimization problems and p1
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integer optimization problems. For each continuous dimension d = 1, . . . , p0, we solve:

min
wd

n∑
i=1

n∑
j=1

tdij(wid − wjd)2

s.t. wid = xid (i, d) ∈ N0,

where wd ∈ Rn are the imputed values in the dth dimension. This is a quadratic opti-
mization problem with an explicit optimum. For each wid, (i, d) ∈M0, an optimal solution
is

wid =



∑
(j,d)∈N d

0
tdijxjd∑

(j,d)∈N d
0
tdij

, if
∑

(j,d)∈N d
0
tdij ≥ 1,

1

|N d
0 |

∑
(j,d)∈N d

0

xjd, otherwise,

where N d
0 := {(i, r) ∈ N0 : r = d}. This solution corresponds to setting each missing

entry equal to the mean of all observed values in the same leaf node. If the number of
non-missing values in the same leaf node as wid is zero, i.e.,

∑
(j,d)∈N d

0
tdij = 0, then we set

all of the values in that leaf node to the mean impute solution.
For each categorical dimension d = p0 + 1, . . . , p0 + p1, we solve the following integer

optimization problem:

min
vd

n∑
i=1

n∑
j=1

tdij1{vid 6=vjd}

s.t. vid = xid, (i, d) ∈ N1,

where vd ∈ {1, . . . , kd}n are the imputed values for the dth dimension. An optimal solution
is

vid =

 mode
(
{xjd : tdij = 1, (j, d) ∈ N1}

)
if |{xjd : tdij = 1, (j, d) ∈ N1}| ≥ 1,

mode
(
{xjd : (j, d) ∈ N1}

)
otherwise.

In step 2b , we update the missing imputed values one at a time, which results in slightly
different closed form solutions for wid, (i, d) ∈ M0 and vid, (i, d) ∈ M1. First, we update
the continuous variables wid, (i, d) ∈M0 by solving:

min
wid

2

n∑
j=1

tdij(wid − wjd)2. (16)

An optimal solution to Problem (16) is

wid =



∑
j 6=i t

d
ijwjd∑

j 6=i t
d
ij

, if
∑

j 6=i t
d
ij ≥ 1,

1

|N d
0 |

∑
(j,d)∈N d

0

xjd, otherwise.
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Next, we update the categorical variables vid, (i, d) ∈M1 one at a time by solving:

min
vid

2
n∑
j=1

tdij1{vid 6=vjd}. (17)

An optimal solution to Problem (17) is

vid =

 mode
(
{vjd : tdij = 1}

)
, if |{vjd : tdij = 1}| ≥ 1,

mode
(
{xjd : (j, d) ∈ N1}

)
, otherwise.

Both of these updates coincide with the predicted values from the decision trees constructed.

2.6 Model Selection Procedure

Each of the above methods and choice of hyperparameters generates some imputed values.
For single imputation, a single set of imputed values should be generated in the end. We
propose the following procedure for model selection.

Given X with existing missing dataM0,M1, we generate an additional fixed percentage
of data missingMvalid

0 ,Mvalid
1 , with the known values as the hold-out set, and perform each

of the imputation methods under the combined missing pattern. We evaluate the imputation
quality on the hold-out validation set by measuring how closely the imputed values resemble
the ground truth values. In particular, the mean absolute error (MAE) between true and
imputed values for each imputation method is calculated. The validation MAE is defined
to be

1

|Mvalid
0 |

∑
(i,d)∈Mvalid

0

|wid − xid|+
1

|Mvalid
1 |

∑
(i,d)∈Mvalid

1

1{vid 6=xid}.

Lower values indicate closer imputation, and perfect imputation corresponds to an MAE
of zero. Another metric of imputation quality is root mean squared error (RSME), which
is given by √√√√ 1

|Mvalid
0 |

∑
(i,d)∈Mvalid

0

(wid − xid)2 +
1

|Mvalid
1 |

∑
(i,d)∈Mvalid

1

1{vid 6=xid}.

For each imputation method, the combination of hyperparameters that achieves the
lowest MAE in validation (or RMSE) is selected, and the X is again imputed but under the
original missing patternsM0,M1. This set of imputed values is now ready to be evaluated
or used for downstream tasks.

The hyperparameters that we tune via this method are summarized in Table 3. In addi-
tion, we also use this cross-validation procedure to select the best method out of opt.knn,
opt.svm, and opt.tree. We refer to this composite method as opt.cv. Similarly, we may
use the cross-validation procedure for model selection for any set of imputations. We define
benchmark.cv to be the procedure that selects the best method out of: mean, pmm, bpca,
knn, and iknn that will be later used in computational comparisons (see Section 3.1 for
descriptions of these individual methods).
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Method Hyperparameters

K-NN K
SVM C, σ2

Trees cp

Table 3: Hyperparameters tuned via the model selection procedure outlined in Section 2.6.

σ2 is a parameter in the radial basis function kernel, K(xi,xj) = exp(
‖xi−xj‖

σ2 ). cp
is a complexity parameter related to the depth of the decision tree.

2.7 Extensions to Multiple Imputation

Thus far, we have described opt.impute methods for single imputation which output a
single completed data set. On the other hand, multiple imputation methods output m ≥ 2
different completed data sets for a single missing data problem. Afterwards, analysis is
performed on each of the m data sets separately, and the results are pooled (Little and
Rubin, 1987). For some applications, multiple imputation is preferred because it captures
the variation in missing data imputation, which enables us to compute confidence intervals
for downstream models trained on the imputed data sets. In addition, the pooled results
from models fit on multiple imputed data sets may provide better point estimates than
models fit on a single imputed data set in some cases.

To extend opt.impute to produce multiple imputations, we generate m warm starts
using a probabilistic procedure, run opt.knn, opt.svm, or opt.tree from these starting
points, and output the full set ofm completed data sets. These warm starts can be generated
from sample draws under a previously estimated posterior distribution; an example would
be using outputs from the mice procedure. This provides us with a representative set of
imputations found by the opt.impute algorithm, which converges to local optima. We refer
to the multiple imputation method as opt.mi. In the computational experiments, we use
the benchmark multiple imputation method mice to generate the warm starts.

Note that there are other possible ways of adapting opt.impute to the multiple im-
putation schema. We may introduce m instances of artificial noise in the observed values,
and solve the resulting optimization problems. Alternatively, we may run opt.impute on
m bootstrapped samples of the original data set. Afterwards, we can analyze each of the
m imputed data sets separately and pool the results as before.

3. Real-World Data Experiments

In this section, we evaluate the performance of opt.impute on many real-world data sets.
Our comparisons include 1) the effect on imputation accuracy, and 2) the effect on the
performance of downstream machine learning tasks. We compare to the most commonly
used state-of-the-art methods on a large sample of data sets from the UCI Machine Learning
Repository. For data sets that include categorical variables, we impute the discrete values
directly using our specialized imputation methods for categorical variables and benchmark
methods.
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3.1 Experimental Setup

To test the accuracy of the proposed missing data imputation method, we run a series of
computational experiments on data sets taken from the UCI Machine Learning Repository
for both regression and classification tasks. The data sets cover a range of number of obser-
vations n and number of features p, potentially mixed with both continuous and categorical
variables. The numbers of continuous (p0) and categorical (p1) variables in each of these
data sets are given in Table 10.

In these experiments, we use full data sets in which all entries are known, and we
generate patterns of missing data for various percentages ranging from 10% to 50%. We
take the full data sets X that have no missing entries to be the ground truth. We run some
of the most commonly-used and state-of-the-art methods for data imputation on these data
sets to predict the missing values and compare against our optimization based imputation
methods. The individual methods in this comparison are:

1. Mean Impute (mean): The simplest imputation method. For each missing value xid,
imputes the mean of all known values in dimension d.

2. Predictive-Mean Matching (pmm): An iterative method which imputes missing val-
ues from known values in a given dimension using linear regressions. It is commonly
used for multiple imputation and can be generalized to multiple missing dimensions
using the chained equations process (Buuren and Groothuis-Oudshoorn, 2011). Im-
plemented using the MICE package in R.

3. Bayesian PCA (bpca): A missing data estimation method based on Bayesian prin-
cipal component analysis (Oba et al., 2003). Implemented using the pcaMethods

package in R.

4. K-Nearest Neighbors (knn): A single-step, greedy method which imputes missing
values using the K-nearest neighbors of an observation based upon Euclidean dis-
tance. The candidate neighbors must have non-missing values in the imputed feature.
Averaged distance is used if some other coordinates are missing. Implemented using
the impute package in R.

5. Iterative K-Nearest Neighbors (iknn): Implemented in R and Julia, based on the
description in the original papers (Brás and Menezes, 2007; Caruana, 2001) .

6. Optimal Impute (opt.impute): All sub-methods below use warm starts including:
mean, knn, bpca and five random starts where the values are imputed by a random
sampling of the non-missing observations of that feature. The imputation which
results in the lowest objective value is selected for each method.

(a) K-NN based (opt.knn): This method solves the optimal K-nearest neighbors
problem (7). Convergence time depends upon the quality of the initial warm
start. We run both block coordinate descent and coordinate descent for small
data sets of size n ≤ 10,000, and only coordinate descent for large data sets with
higher n. The implementation was in the programming language Julia with fast
algorithms for K-nearest neighbor calculations.
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(b) SVM Regression and Classification based (opt.svm): This method solves the
maximum margin support vector machine problem (11) using a radial basis
function kernel. For continuous variables, we use ε-support vector regression;
for categorical variables, we use classical support vector machines. These prob-
lems were solved using coordinate descent methods. The implementation was in
Julia using the scikit-learn package in Python.

(c) Decision Tree based (opt.tree): This method solves the optimal decision-tree
problem (15). For continuous variables, a single-leaf regularized regression tree
is used; for categorical variables, a fast coordinate descent-based algorithm for
solving Optimal Classification Trees is used (Bertsimas and Dunn, 2017). We
run coordinate descent for the imputation problems. The implementation was
in Julia using the packages glmnet and OptimalTrees.

In addition, we consider two composite methods: opt.cv, which selects the best method
from opt.knn, opt.svm, and opt.tree; and benchmark.cv, which selects the best method
from mean, pmm, bpca, knn, and iknn. These composite methods use the cross-validation
procedure described in Section 2.6. To generate the validation set for each missing data
problem, we randomly sample an additional 10% of the entries to be hidden under the
MCAR assumption. After running each individual method, we select the one that gives the
lowest MAE on the validation set. We re-run this method on the original missing data set
to obtain the final imputation.

Each imputation method was run for a maximum time limit of 12 hours on each data
set. The quality of the imputations is evaluated using the same MAE and RMSE metrics
defined in Section 2.6. For each of the opt.impute methods, we also record and present
the convergence in objective value and MAE to show the progress over the iterations.

3.1.1 Missing Pattern

Because the mechanism which generates the pattern of missing data can affect imputa-
tion quality, we run experiments under two different missing data mechanisms: missing
completely at random (MCAR) and not missing at random (NMAR). These statistical as-
sumptions are summarized in Table 4. The MCAR assumption implies that the missing
pattern is completely independent from both the missing and observed values. The NMAR
assumption implies that the missing pattern depends upon the missing values. There is an
intermediate type of assumption, missing at random (MAR), which implies that the missing
pattern depends only upon the observed values, but not upon the missing values. Because
this assumption is less general than NMAR, we do not consider this mechanism for our
experiments.

To generate MCAR patterns of missing data, we randomly sample a subset of the entries
in X to be missing, assuming that each entry is equally likely to be chosen. The NMAR
patterns are generated by sampling missingness indicators as independent Bernoulli random
variables where each probability pid equals the probability that a normal random variable
N(xid, ε) is greater than a particular threshold for dimension d. The threshold for each
dimension d is the quantile of Xd which corresponds to the desired missing percentage
level.
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Mechanism of Missing Data Assumption

Missing Completely at Random (MCAR) f(M|Xobs,Xmiss) = f(M)
Missing at Random (MAR) f(M|Xobs,Xmiss) = f(M|Xobs)
Not Missing at Random (NMAR) f(M|Xobs,Xmiss) is a function of Xmiss

Table 4: Statistical assumptions of mechanisms used to generate patterns of missing data
M for data set X. Here, we suppose that f is the underlying density of the missing
pattern, and Xobs,Xmiss are the observed and missing components of the data set,
respectively.

Note that regardless of the missing data scenarios generated for the experiments, in
order to make fair comparisons, we always use MCAR as the generating mechanism for
cross-validation.

3.1.2 Downstream Tasks

For 10 data sets from the UCI Machine Learning Repository, we run further experiments
to evaluate the impact of these imputations on the intended downstream machine learning
tasks. This selection includes a representative sample of 5 data sets for regression and 5
data sets for classification, with dependent variable observations Y ∈ Rn and Y ∈ {0, 1}n
respectively. We evaluate both single and multiple imputation methods in these experi-
ments.

For single imputation, we consider opt.cv and benchmark.cv. First, we divide each
downstream data set using a 50% training/testing split. Next, we randomly sample a fixed
percentage of the entries in X to be missing completely at random, ranging from 10% to
50%. For each missing percentage, we impute the missing values in the training set and
then fit standard machine learning algorithms to obtain a classification or regression model.
We impute the missing values in the testing set by running the imputation methods on the
full data set. For the regression tasks, we fit cross-validated LASSO and SVR models and
compute the out-of-sample accuracy on the imputed testing set. For the classification tasks,
we fit cross-validated SVM and Optimal Trees models and compute the out-of-sample R2

on the imputed testing set.

We also evaluate the performance of multiple imputation methods on the downstream
tasks. In these experiments, we consider the following methods:

1. Multivariate Imputation by Chained Equations (mice): An iterative method
which imputes each dimension with missing values one at a time drawing from distri-
butions fully conditional on the other variables. We use predictive mean matching for
continuous variables and logistic regression for categorical variables. This process is
repeated to generate m fully imputed data sets. Implemented via the MICE package
in R.

2. Optimal Impute for Multiple Imputation (opt.mi): Starting from m warm
starts, we run opt.knn, opt.svm, or opt.tree to generate a new set of m fully

21



Bertsimas, Pawlowski, and Zhuo

imputed data sets. We use warm starts produced by mice, and the best model among
K-NN, SVM, and trees is selected initially via cross-validation.

For both mice and opt.mi, we generate m = 5 multiple imputations for the training set and
fit an ensemble of predictive models on these completed training sets. We make predictions
on the test set by averaging the predictions from the model ensemble. For the classification
tasks, we use a threshold value of 0.5. We run this experiment 100 times with different
training/testing splits and distributions of missing values for each data set and report the
averaged out-of-sample of the predictive models.

3.2 Results

We run the methods on 84 data sets from the UCI Machine Learning Repository. These
data sets range in size from n = 23 to 5,875 observations and dimension p = 2 to 124. In
the following sections, we first show the convergence for each of the opt.impute methods
is fast and generally leads to a decrease in MAE. Next, we demonstrate that the quality of
the imputations is significantly higher for opt.impute compared to the reference methods,
and that this leads to improved performance on downstream classification and regression
tasks. We further discuss the sensitivity of imputation quality to the model parameters (K,
cp, C), warm starts, descent method (BCD or CD), and data characteristics including the
missing pattern. Finally, we compare the computational burden of each method.

3.2.1 Convergence

Figure 1 represents the change in objective value and MAE over the iterations for each of
the opt.impute methods based on mean warm start, using iris data set as an example.
We present results for opt.knn (CD and BCD), opt.svm (CD), and opt.tree (CD). The
convergence is relatively fast for all methods; in particular, the BCD algorithm for K-
NN converges significantly faster than the CD algorithm. When comparing the change in
MAE, the value generally monotonically decreases with each iteration in concordance with
the change in objective, especially during the first few iterations. In some paths, MAE
increases slightly after a certain point. RMSE exhibits the same behavior and is therefore
not plotted. This suggests a potential issue of overfitting to the known observations, which
may be remedied by regularization or early stopping. In summary, the solution paths
illustrate: 1) convergence is often fast, and 2) the objective functions are decent proxies
for out-of-sample MAEs, and 3) imputation quality for each first-order method generally
improves until convergence.

In general, we found that the BCD algorithm for opt.knn did not significantly improve
upon imputation accuracy compared to the CD algorithm, but only improved upon speed.
Because the BCD algorithms do not scale as well, we restricted our analysis to the CD
algorithms for opt.svm and opt.tree.

3.2.2 Imputation Accuracy

The imputation accuracy for each data set is presented in Table 10 for the scenario in
which 30% of the entries are missing, assuming MCAR. We compare the benchmark ones
and each individual opt.impute method (not cross-validated); the method with the lowest
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Figure 1: Solution paths of opt.impute methods on the iris data set. These plots show
the objective value and mean absolute error (MAE) of the imputation over the
course of the algorithm. Each path represents a different algorithm: opt.knn

(BCD and CD), opt.svm (CD), and opt.tree (CD). Mean imputation warm
start is used.
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MAE (i.e., best imputation accuracy) is bolded. Among all data sets, at least one of the
opt.impute methods obtains the lowest MAE in 76.2% of the data sets, followed by iknn

and bpca imputation methods with 9 and 4 wins each. Comparatively, mean, knn, and pmm

impute have the weakest performances. Among the opt.impute methods, the tree based
model achieves the lowest MAE in most data sets.

We repeat this experiment for other percentages of missing data with the winning counts
summarized in Figure 2, using opt.cv as our proposed method. We show the number of
times that each method achieves the best overall imputation with lowest MAE and RMSE
under five different missing data percentages, as well MCAR and NMAR scenarios. In
all missing data scenarios, our proposed method produces the best imputations in more
than half of the data sets according to both performance metrics. Among the comparator
methods, mean and pmm are generally among the weaker ones. When MAE is the metric, the
heuristic method iknn performs the best among the benchmark methods, suggesting that
the idea of iteratively updating the imputed values have merits. At higher percentages of
missing values (the right-most subfigures), bpca improves in its performance when RMSE
is the metric of evaluation, but still not as strong as opt.cv.

In Figure 3, we present summary results of the MAE and RMSE values as geometric
means across all data sets for each missing percentage and missing data mechanism, with
the confidence bands representing one geometric standard deviation multiplied above and
divided below by the mean. Comparatively, opt.cv achieves the lowest average MAE and
RMSE values for all missing percentages. At the 10% missing data percentage, the average
MAE of the opt.cv imputations is 0.100, a reduction of 14.9% from the average MAE
of 0.118 obtained by the best benchmark method knn. As missing percentages increase,
opt.cv remains the most accurate imputation method, with the average MAE of 0.142 at
50% missing, a reduction of 12.1% from the average MAE of 0.172 obtained by the next
best method knn. The performance of opt.cv relative to benchmark ones does not appear
to differ drastically between the MCAR and NMAR scenarios, with overall higher MAE for
NMAR across most methods, as expected.

To isolate the effect of each individual method from the cross-validation procedure, we
further summarize the results by comparing one method at a time against the benchmark
ones. Table 5 presents the statistical comparisons between each opt.impute method and
each benchmark method. We conduct pairwise Wilcoxon signed rank tests and paired
t-tests between each pair of methods. When comparing opt.cv against the benchmark
methods, our proposed cross-validated method achieves statistically significant lower rank
and lower MAE compared to each benchmark. For each individual opt.impute method,
with the exception of opt.svm against heuristic iknn, the opt.impute one has statistically
significant lower rank than every benchmark. The decrease in MAE is still statistically
significant when mean, bpca, and pmm are comparators, but no longer statistically significant
when compared to knn or iknn. This suggests that each of the proposed methods holds
its own against most benchmark ones, especially under rank comparisons, but the cross-
validation procedure adds another layer of improvement in imputation quality.

Finally, we compare against the same cross-validated procedure introduced in Section 2.6
applied on all the benchmark methods (benchmark.cv) with results in Figure 2b. At 30%
missing data, we observe 10.1% average improvement in MAE down to 0.118 from 0.131.
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Figure 2: Number of data sets in which each missing data imputation method achieves
lowest mean absolute error (MAE) or root mean squared error (RMSE) from true
value, with ties included. Each panel represents a different missing percentage
ranging from 10% to 50%. Panels in the top row are for not missing at random
scenarios, whereas the ones in the bottom row are for missing completely at
random scenarios.
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Table 5: Pairwise Wilcoxon signed-rank tests and t-tests between opt.impute and bench-
mark methods, with the p-values adjusted for multiple comparisons.

opt.impute Benchmark ∆ rank (adjusted p-value) ∆ MAE (adjusted p-value)

opt.cv mean -0.7855 (<0.001***) -0.0502 (<0.001***)
opt.cv pmm -0.8355 (<0.001***) -0.0399 (<0.001***)
opt.cv bpca -0.6329 (<0.001***) -0.0214 (0.0019**)
opt.cv knn -0.6281 (<0.001***) -0.0134 (0.0499*)
opt.cv iknn -0.5352 (<0.001***) -0.0199 (0.0046**)
opt.knn mean -0.6424 (<0.001***) -0.0419 (<0.001***)
opt.knn pmm -0.6091 (<0.001***) -0.0316 (<0.001***)
opt.knn bpca -0.4875 (<0.001***) -0.0131 (0.0601)
opt.knn knn -0.3850 (<0.001***) -0.0051 (0.4574)
opt.knn iknn -0.3611 (<0.001***) -0.0116 (0.1011)
opt.svm mean -0.5852 (<0.001***) -0.0355 (<0.001***)
opt.svm pmm -0.4875 (<0.001***) -0.0252 (<0.001***)
opt.svm bpca -0.2515 (<0.001***) -0.0067 (0.3335)
opt.svm knn -0.1371 (0.0033**) +0.0013 (0.8485)
opt.svm iknn -0.0322 (0.0884) -0.0052 (0.4589)
opt.tree mean -0.7139 (<0.001***) -0.0454 (<0.001***)
opt.tree pmm -0.7712 (<0.001***) -0.0351 (<0.001***)
opt.tree bpca -0.5137 (<0.001***) -0.0165 (0.0176*)
opt.tree knn -0.4136 (<0.001***) -0.0086 (0.2152)
opt.tree iknn -0.3135 (<0.001***) -0.0151 (0.0337*)

Further, opt.cv achieves highest imputation accuracy in more than 78.6% of the data sets
compared to benchmark.cv.

3.2.3 Performance on Downstream Tasks

Next, we evaluate the performance of standard machine learning algorithms for classification
and regression trained on the imputed data. We consider the data sets in Table 6, which
were selected as a representative subsample from the UCI Machine Learning Repository
data sets. These data sets range in size, having n = 150 to 5,875 observations and p = 4 to
16 features. The difficulty of the regression or classification task on the completely known
data set also varies widely. The baseline out-of-sample accuracy of an SVM model for the
binary classification problems ranges from 77% to 100%, and the baseline out-of-sample
R2 of a LASSO model for the regression problems ranges from 0.09 to 0.82. For each of
these data sets, the downstream tasks become more difficult as the missing data percentage
increases.

In Figure 4, we show how the imputation method chosen impacts the performance for
downstream tasks, across different data sets and different missing data percentages. In
Tables 7 and 8, we show pairwise t-test results, aggregating out-of-sample performance
results by downstream task and missing percentage. These results include comparisons for
both single and multiple imputation methods.

For the single imputation methods, we observe that the improvement of opt.cv over the
best cross-validated benchmark method is statistically significant for all missing percentages
in both classification and regression tasks. Moreover, this improvement in out-of-sample
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Figure 3: Mean absolute error (MAE) and root mean squared error (RMSE) across 84 data
sets for each imputation method, comparing opt.cv against all benchmark meth-
ods and against the cross-validated best benchmark method, benchmark.cv. The
center lines are geometric mean with one geometric standard deviation multiplied
above and divided below. The x-axis corresponds to the percentage of missing
entries.
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Downstream Task Name (n, p) Baseline Accuracy or R2

Classification

climate-model-crashes (540, 18) 0.95
connectionist-bench (990, 10) 0.93
ecoli (336, 8) 0.96
iris (150, 4) 1.00
pima-indians-diabetes (768, 8) 0.77

Regression

abalone (4177, 7) 0.51
auto-mpg (392, 8) 0.82
housing (506, 13) 0.71
parkinsons-telemonitoring-total (5875, 16) 0.09
wine-quality-white (4898, 11) 0.27

Table 6: Data sets considered for downstream regression and classification tasks. For clas-
sification tasks, we list the average baseline out-of-sample accuracy of an SVM
model fit on the full data set, and for regression tasks, we list the average baseline
out-of-sample R2 of a LASSO model fit on the full data set.

accuracy and R2 is monotonically increasing with the missing percentage. At 50% missing
data, the average improvement in out-of-sample accuracy is 1.7% for classification tasks,
and the average improvement in out-of-sample R2 is 0.024 for regression tasks.

For the multiple imputation methods, we observe that the improvement of opt.mi over
mice is statistically significant for all missing percentages in the regression tasks, and 3/5
missing percentages in the classification tasks. At the 50% missing percentage, the average
improvement is 0.5% in out-of-sample accuracy for classification tasks and 0.010 in out-of-
sample R2 for regression tasks. While these improvements are smaller than those for single
imputation, they are significant at the p = 0.001 level.

Overall, these results suggest that opt.impute leads to gains in out-of-sample perfor-
mance in both single and multiple imputation settings. The relative improvements are
consistently greatest at the highest missing percentages, where the imputation method se-
lected has the largest impact on the downstream performance.

Finally, we compare the performance of single vs multiple imputation for opt.impute.
We observe that the improvement of opt.mi over opt.cv is statistically significant in 8/10
scenarios, with the largest improvements occurring at the highest missing percentages. At
the 50% missing percentage, the average improvement is 0.4% in out-of-sample accuracy for
classification tasks and 0.017 in out-of-sample R2 for regression tasks. These improvements
are similar to the gains in performance over mice.

3.2.4 Sensitivity to Parameters

Model performance can be impacted by various parameters. For a specific data set and
model, the performance can be sensitive to hyperparameters such as the number of neighbors
K in K-NN and the trade-off parameter C for SVM. It is also affected by the number of
random starts and choice of algorithm between block coordinate descent and coordinate
descent. Data characteristics such as sample size n, feature dimension p, and missing data
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Figure 4: Average out-of-sample performance of downstream models trained on data im-
puted via opt.impute and benchmark methods across a sample of classification
and regression problems and a range of missing data percentages. Multiple and
single imputation methods are solid and dotted lines respectively.
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∆ Out-of-Sample Accuracy (adjusted p-value)

Missing % opt.mi - mice opt.cv - benchmark.cv opt.mi - opt.cv

10 -0.0001 (1.0000) 0.0016 (0.0059**) 0.0006 (0.2076)
20 0.0018 (0.0059**) 0.0026 (<0.001***) 0.0008 (0.2076)
30 0.0005 (0.9858) 0.0082 (<0.001***) 0.0002 (1.0000)
40 0.0018 (0.0491*) 0.0113 (<0.001***) 0.0043 (<0.001***)
50 0.0052 (<0.001***) 0.0171 (<0.001***) 0.0038 (<0.001***)

Table 7: Pairwise t-tests between opt.impute and benchmark methods for downstream
classification tasks, with the p-values adjusted for multiple comparisons.

∆ Out-of-Sample R2 (adjusted p-value)

Missing % opt.mi - mice opt.cv - benchmark.cv opt.mi - opt.cv

10 0.0014 (<0.001***) 0.0034 (<0.001***) 0.0013 (<0.001***)
20 0.0029 (<0.001***) 0.0113 (<0.001***) 0.0027 (<0.001***)
30 0.0071 (<0.001***) 0.0161 (<0.001***) 0.0077 (<0.001***)
40 0.0085 (<0.001***) 0.0195 (<0.001***) 0.0108 (<0.001***)
50 0.0097 (<0.001***) 0.0237 (<0.001***) 0.0174 (<0.001***)

Table 8: Pairwise t-tests between opt.impute and benchmark methods for downstream
regression tasks, with the p-values adjusted for multiple comparisons.

percentage may affect the imputation quality as well. This section explores how these
parameters impact the imputation quality.

We found that all of the imputation model hyperparameters that we investigated affect
imputation accuracy. Figure 5 shows the relationship between the hyperparameters and
MAE for various data sets and missing patterns. For opt.knn (CD and BCD), the out-of-
sample MAE first decreases and then increases as the hyperparameter increases. When K
reaches the sample size, the imputation is equivalent to mean imputation. For opt.svm,
the imputation accuracy remains relatively constant with respect to changes in parameter
C after a certain threshold. There were no external parameters for trees, as the trees in
each step were pruned during the training process. Overall, these plots suggest that the
opt.impute methods are relatively robust even if their hyperparameters are not known
exactly.

For opt.knn, the performances of block coordinate descent and coordinate descent are
comparable. Under most missing data scenarios, block coordinate descent achieves the lower
MAE in a few more data sets. As the missing data percentage increases, in many problems
both block coordinate descent and coordinate descent methods find the same solutions,
thus resulting in a tie. Comparing between the two, there is no clear dominant strategy;
in practice we recommend running both methods and then selecting the imputation which
yields the lowest objective value.
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Figure 5: Sensitivity of MAE to the choice of K for the number of neighbors for K-NN
coordinate descent, K-NN block coordinate descent, and the trade-off parameter
C for SVM in data set iris. The colors represent different missing data percent-
ages. The parameter value that achieves lowest MAE is labeled for each missing
data percentage.

3.2.5 Computational Speed

Next, we compare the computational time required for all imputation methods across a
selection of six UCI data sets and missing data patterns. Each method was run on a single
thread of a machine with an Intel Xeon CPU E5-2650 (2.00 GHz) Processor and limited to
8 GB RAM with a time limit of 4 hours. For various opt.impute methods, we report the
running times for mean warm starts, as multiple warm starts can be trivially parallelized.
The results are shown below in Table 9.

Mean imputation is almost instantaneous and is therefore not presented in the table.
For small-scale problems on the iris data set, all imputation methods finish quickly. As
the data dimension p increases (for example, in the libras-movement data set), most
opt.impute methods scale better than the pmm method. As the sample size n increases,
opt.knn.CD also scales better than pmm, as seen in banknote-authentication and skin-segmentation.
Among the opt.impute methods, tree based imputation scales very well with respect to
sample size n but not dimension p. Despite its high imputation quality, SVM based impu-
tation scales relatively poorly with respect to both n and p. Among the proposed methods,
opt.knn.CD has the best scalability in both n and p.

In particular, when comparing coordinate descent and block coordinate descent methods,
the former performs best when the data size is large. When n is in the 100,000s, the
coordinate descent method still converges within one hour (see skin-segmentation). For
the block coordinate descent method, each iteration requires solving a separate system of
linear equations for each continuous dimension, or an integer optimization problem for each
of the categorical dimensions. On the other hand, the main bottleneck of opt.knn.CD is
computing the K-NN assignment on X to update Z each iteration, which requires only
O(n log n) time. When the problem size is small, the running times of the two methods are
comparable, and the block coordinate descent method is slightly faster because it converges
in fewer iterations. However, when the number of data entries to be imputed exceeds a
certain threshold, the block coordinate descent method slows down and takes much longer.
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Time (in seconds)

Benchmark opt.impute

Name (n, p) Missing % bpca knn pmm knn.CD knn.BCD svm.CD tree.CD

iris (150, 4)
10 0.802 0.088 0.353 0.006 0.023 0.131 0.049
30 1.717 0.446 0.474 0.036 0.041 0.498 0.091
50 1.875 0.736 0.334 0.085 0.097 0.762 0.062

banknote-authen. (1372, 4)
10 2.262 2.552 1.717 0.261 1.285 3.269 0.046
30 14.058 14.914 1.911 0.772 4.981 15.625 0.116
50 17.820 16.889 2.141 1.578 17.573 15.280 0.159

libras-movement (360, 90)
10 2.624 0.088 0.353 0.006 0.023 0.131 0.049
30 3.423 0.446 0.474 0.036 0.041 0.498 0.091
50 1.892 0.736 0.334 0.085 0.097 0.762 0.062

mushroom (5644, 76)
10 26.432 387.386 4782.855 8.037 72.169 1442.942 -
30 46.726 8.134 1068.476 12.818 17.572 - -
50 63.556 10.155 893.243 10.511 12.948 - -

skin-segmentation (245057, 3)
10 392.310 1144.120 12193.105 1144.144 144.679 - 9.574
30 450.584 1380.138 - 1420.641 - - 15.616
50 615.037 2503.464 - 2582.102 - - 17.818

cnae-9 (1080, 856)
10 30.310 13.038 - 12.701 12.727 - -
30 58.205 13.970 - 13.931 13.972 - -
50 126.059 14.361 - 14.284 14.343 - -

Table 9: Computational time comparison of benchmark and opt.impute imputation meth-
ods. Blank entries indicate that the method failed to converge with the 4 hour
time limit.

32



From Predictive Methods to Missing Data Imputation

In practice, we recommend running both when n ≤ 10,000 and performing model selection
between the two, and running only coordinate descent when n is larger.

4. Discussion

One of the primary contributions of this paper is the formulation of the missing data problem
as a family of optimization problems. This framework accommodates almost any predictive
model that describes the conditional relationship within the data, ranging from parametric
to fully non-parametric models. By design, these formulations admit arbitrary missing
pattern and mixed data types and do not require specific joint distributional assumptions
on the data. In addition, we show how these methods can be used to generate multiple
imputations.

The first-order methods that we developed to solve these optimization problem are
highly scalable and produce high quality solutions. These methods are computationally
fast; for example, the coordinate descent method for SVM solves problems with 100,000s of
data points and 1,000s of features in seconds on a standard desktop computer. With more
random starts, we obtain solutions which continue to improve upon the objective. Since
random warm starts can be trivially parallelized, increasing the number of warm starts does
not change the computational times materially if implemented efficiently.

For single imputation, we propose opt.cv, a combination method which uses cross-
validation to select the best imputation objective function from K-NN, SVM, and decision
tree models. We provide evidence on opt.cv’s strong empirical performance against bench-
mark single imputation methods in large scale computational experiments on 84 real-world
data sets. For all of the missing data scenarios considered, opt.cv produces the best
overall imputation for the largest number of data sets. In addition, opt.cv produces the
lowest average MAE and RMSE for the majority of missing data scenarios. Our proposed
cross-validation procedure generates additional missing pattern under MCAR, which may
be further improved by adapting the generative procedure for more accurate reflection of
imputation quality in the original data missing.

Further, we demonstrate that using the imputations produced by opt.cv with values
closer to the ground truth leads to gains in out-of-sample performance on downstream re-
gression and classification tasks. This suggests that at medium-to-high missing percentage
scenarios, machine learning practitioners will benefit significantly by adopting this frame-
work for single imputation.

For multiple imputation, we propose opt.mi, a method which runs opt.impute on a set
of probabilistically generated warm starts. We show that this method offers a statistically
significant improvement over both mice and opt.cv in the downstream tasks. However,
the multiple imputation methods have drawbacks because they are computationally slower,
require pooling after analyzing multiple data sets, and produce an ensemble of models which
is less interpretable than a single model. Therefore, unless statistical inference is required,
opt.cv may be preferable for many applications.

Given the optimization formulations introduced in this paper, there are multiple open
questions for future research. We may consider alternate cost functions for missing data
imputation that reflect out-of-sample performance better. For example, in the K-NN based
model, we could add a regularizer term or use the L1 distance or Mahalanobis distance
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metric instead of the squared Euclidean distance metric. The tree based imputation method
invites future development in fast optimal trees for convergence and better performance.
Finally, solving the global optimization problem (1) fast and accurately for any of the three
examples of non-convex, non-linear cost functions c(U,W,V;X) proposed in this paper
remains an open question.

5. Conclusions

In summary, we frame the classical missing data problem as a non-convex optimization
problem based upon a variety of predictive models. We propose a family of new imputation
methods, opt.impute, which finds high quality solutions to this problem using fast first-
order methods. Through extensive computational experiments on 84 data sets from the UCI
Machine Learning Repository, we show that opt.impute yields statistically significant gains
in imputation quality over state-of-the-art imputation methods, which leads to improved
out-of-sample performance on downstream tasks. This approach scales to large problem
sizes, generalizes to multiple imputation, and improves over state-of-the-art methods across
a broad range of missing data scenarios.
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Benchmark opt.impute

Name n p0 p1 mean pmm bpca knn iknn knn svm tree

acute-inflammations-1 120 1 5 0.3701 0.3626 0.2307 0.2694 0.3598 0.2285 0.2267 0.2185
acute-inflammations-2 120 1 5 0.3701 0.3626 0.2307 0.2694 0.3598 0.2285 0.2267 0.2185
airfoil-self-noise 1503 5 0 0.2332 0.2270 0.2332 0.2018 0.2054 0.1944 0.1949 0.2002
airline-costs 31 9 0 0.1799 0.1566 0.1054 0.1113 0.1071 0.0970 0.1084 0.1037
auto-mpg 392 5 2 0.2404 0.1793 0.1547 0.1623 0.1690 0.1396 0.1362 0.1291
balance-scale 625 4 0 0.3011 0.4112 0.3011 0.3503 0.3113 0.3701 0.3206 0.3049
banknote-authentication 1372 4 0 0.1608 0.1596 0.1608 0.1321 0.1361 0.1117 0.1182 0.1243
beer-aroma 23 8 0 0.2036 0.2004 0.1772 0.1773 0.1838 0.1728 0.1638 0.1628
blood-transfusion 748 4 0 0.1123 0.1215 0.1123 0.0945 0.0880 0.0799 0.0824 0.0664
breast-cancer-diagnostic 569 30 0 0.1066 0.0431 0.0558 0.0520 0.0565 0.0486 0.0512 0.0351
breast-cancer-prognostic 194 31 1 0.1304 0.0727 0.0850 0.0846 0.0911 0.0794 0.0682 0.0576
breast-cancer 683 8 1 0.2458 0.1531 0.1318 0.1541 0.1788 0.1367 0.1355 0.1333
climate-model-crashes 540 18 0 0.2505 0.3404 0.2505 0.2651 0.2570 0.2750 0.2921 0.2519
communities-and-crime-2 111 101 23 0.1374 0.2191 0.1137 0.0864 0.1053 0.0845 0.0875 0.0577
communities-and-crime 123 99 23 0.1613 0.2901 0.1327 0.0987 0.1252 0.0973 0.0936 0.0711
computer-hardware 209 7 1 0.1989 0.1888 0.1989 0.1824 0.1703 0.1917 0.1780 0.1832
concrete-compressive 103 7 0 0.2338 0.2005 0.2057 0.2053 0.1982 0.1854 0.1868 0.1750
concrete-flow 103 7 0 0.2338 0.2005 0.2057 0.2053 0.1982 0.1854 0.1868 0.1750
concrete-slump 103 7 0 0.2338 0.2005 0.2057 0.2053 0.1982 0.1854 0.1868 0.1750
congressional-voting-records 232 0 16 0.4357 0.4351 0.2150 0.2504 0.4357 0.2107 0.2449 0.3509
connectionist-bench-sonar 208 60 0 0.1629 0.1208 0.1440 0.1088 0.1219 0.1071 0.0918 0.0905
connectionist-bench 990 10 0 0.1506 0.1632 0.1294 0.1049 0.1001 0.0829 0.1143 0.1224
construction-maintenance 33 4 0 0.3614 0.2461 0.3638 0.3299 0.2836 0.3283 0.3250 0.3979
contraceptive-method-choice 1473 8 1 0.2767 0.2768 0.2519 0.2634 0.2336 0.2229 0.2263 0.2452
dermatology 358 33 1 0.2254 0.1447 0.1484 0.1212 0.1421 0.1082 0.1364 0.1957
diabetes 43 2 0 0.1868 0.2768 0.1868 0.1844 0.2095 0.2404 0.1847 0.1950
ecoli 336 7 0 0.1215 0.1224 0.0938 0.1071 0.0908 0.0990 0.1109 0.0904
fertility 100 7 2 0.3526 0.3854 0.3433 0.3432 0.3476 0.3369 0.3450 0.3665
flags 194 22 6 0.3246 0.3146 0.3246 0.2542 0.3039 0.2475 0.3290 0.2603
geographic-origin 1059 68 0 0.0827 0.0764 0.0599 0.0510 0.0557 0.0477 0.0584 0.0438
glass-identification 214 9 0 0.1140 0.0825 0.0956 0.0862 0.0865 0.0851 0.0923 0.0862
haberman-survival 306 3 0 0.1701 0.2258 0.1701 0.1754 0.1663 0.1734 0.1727 0.1696
hayes-roth 132 4 0 0.2768 0.3719 0.2778 0.2873 0.2779 0.2965 0.2948 0.2770
heart-disease-cleveland 297 8 5 0.3261 0.3386 0.2878 0.2945 0.3023 0.2763 0.2738 0.3041
hepatitis 80 4 15 0.3094 0.3019 0.3094 0.2753 0.2626 0.2573 0.2657 0.3480
hill-valley-noise 606 100 0 0.0998 0.0105 0.0066 0.0052 0.0283 0.0051 0.0781 0.0114
hill-valley 606 100 0 0.0971 0.0974 0.0055 0.0042 0.0273 0.0042 0.0783 0.0031
housing 506 13 0 0.1821 0.1211 0.1154 0.0985 0.1042 0.0798 0.1049 0.1261
hybrid-price 153 3 0 0.1538 0.1605 0.1538 0.1289 0.1069 0.1370 0.1202 0.1231
image-segmentation 210 19 0 0.1450 0.0806 0.0856 0.0637 0.0672 0.0627 0.0846 0.0628
immigrant-salaries 35 3 0 0.2247 0.2134 0.2247 0.1869 0.1700 0.1901 0.1673 0.1808
indian-liver-patient 579 8 2 0.1039 0.0953 0.0954 0.0981 0.0873 0.0910 0.1167 0.0789
ionosphere 351 34 0 0.2016 0.1739 0.1552 0.1107 0.1187 0.1172 0.1206 0.1475
iris 150 4 0 0.2200 0.1292 0.1571 0.1274 0.1370 0.1132 0.1048 0.1130
japan-emmigration 45 5 0 0.2096 0.2625 0.2098 0.2064 0.1737 0.2097 0.1866 0.2131
lenses 24 0 4 0.6607 0.6667 0.6696 0.6339 0.6607 0.6786 0.6786 0.6667
libras-movement 360 90 0 0.1823 0.0304 0.1022 0.0670 0.1014 0.0688 0.0522 0.0139
lpga-2008 157 6 0 0.1459 0.1769 0.1424 0.1448 0.1414 0.1496 0.1294 0.1299
lpga-2009 146 11 0 0.1750 0.1048 0.1074 0.1169 0.1131 0.1047 0.0889 0.0881
lung-cancer 27 0 56 0.3677 0.3475 0.3644 0.3426 0.3677 0.3586 0.3348 0.3438
mammographic-mass 830 0 5 0.2803 0.3307 0.2691 0.2386 0.2762 0.3390 0.2439 0.2243
monks-problems-1 124 0 6 0.6441 0.6396 0.6441 0.6059 0.6441 0.6411 0.5991 0.6502
monks-problems-2 169 0 6 0.6405 0.6373 0.6454 0.6340 0.6405 0.6481 0.6438 0.6383
monks-problems-3 122 0 6 0.6554 0.5976 0.6554 0.6813 0.6554 0.6577 0.6877 0.6622
parkinsons-telemonitoring-motor 5875 16 0 0.0623 0.0395 0.0372 0.0389 0.0342 0.0301 0.0458 0.0265
parkinsons-telemonitoring-total 5875 16 0 0.0623 0.0395 0.0372 0.0389 0.0342 0.0301 0.0458 0.0265
parkinsons 195 21 0 0.1348 0.0888 0.0849 0.0754 0.0814 0.0690 0.0824 0.0691
pima-indians-diabetes 768 8 0 0.1217 0.1453 0.1109 0.1164 0.1098 0.1089 0.1049 0.1069
planning-relax 182 12 0 0.1441 0.0823 0.1143 0.1188 0.1195 0.1019 0.0809 0.0680
post-operative-patient 87 0 8 0.3891 0.4428 0.3891 0.4143 0.3861 0.3937 0.4348 0.3955
pyrim 74 27 0 0.1798 0.1235 0.1758 0.1172 0.1193 0.1145 0.1219 0.1282
qsar-biodegradation 1055 41 0 0.0749 0.0379 0.0656 0.0385 0.0410 0.0324 0.0566 0.0452

Table 10: Mean absolute errors of imputation methods on 84 data sets from the UCI Machine Learning
repository with 30% missing values. The lowest MAE for each data set is indicated in bold.
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Benchmark opt.impute

Name n p0 p1 mean pmm bpca knn iknn knn svm tree

seeds 210 7 0 0.2082 0.0795 0.0651 0.1099 0.0862 0.0715 0.0730 0.0644
soybean-large 266 0 35 0.2880 0.2583 0.2467 0.1874 0.2880 0.1858 0.1865 0.2103
soybean-small 47 0 35 0.2689 0.2816 0.2673 0.1577 0.2689 0.1571 0.1571 0.1837
spect-heart 80 0 22 0.2173 0.2134 0.2083 0.1899 0.2173 0.1951 0.1869 0.1913
spectf-heart 80 44 0 0.1307 0.1631 0.1307 0.1226 0.1195 0.1141 0.1058 0.1138
statlog-project-landsat-satellite 4435 36 0 0.1556 0.0405 0.0472 0.0390 0.0480 0.0329 0.0345 0.0293
teaching-assistant-evaluation 151 1 4 0.4017 0.4074 0.4094 0.3711 0.3992 0.4086 0.5131 0.3370
thoracic-surgery 470 3 13 0.1469 0.1704 0.1388 0.1433 0.1463 0.1415 0.2205 0.1397
thyroid-disease-ann-thyroid 3772 21 0 0.0773 0.0774 0.0869 0.0723 0.0603 0.0838 0.1162 0.0729
thyroid-disease-new-thyroid 215 5 0 0.0935 0.1083 0.0887 0.0849 0.0754 0.0774 0.0893 0.0851
triazines 186 60 0 0.1574 0.0667 0.1184 0.0503 0.0708 0.0454 0.0892 0.0495
tv-sales 31 8 0 0.2073 0.1949 0.1808 0.1934 0.1729 0.1952 0.1731 0.1964
vote-for-clinton 2704 9 0 0.0644 0.0715 0.0538 0.0676 0.0552 0.0523 0.0633 0.0537
wall-following-robot-2 5456 2 0 0.0721 0.0955 0.0721 0.0754 0.0720 0.0792 0.0847 0.0717
wall-following-robot-24 5456 4 0 0.0917 0.1172 0.0917 0.0886 0.0872 0.0862 0.0946 0.0895
wiki4he 176 0 44 0.2200 0.2234 0.1857 0.1872 0.1968 0.1777 0.1731 0.2085
wine-quality-red 1599 11 0 0.0976 0.0945 0.0761 0.0796 0.0744 0.0683 0.0757 0.0742
wine-quality-white 4898 11 0 0.0756 0.0782 0.0668 0.0771 0.0645 0.0598 0.0676 0.0597
wine 178 13 0 0.1680 0.1537 0.1203 0.1184 0.1144 0.1091 0.1105 0.1296
yacht-hydrodynamics 308 6 0 0.2102 0.1991 0.2088 0.1858 0.1861 0.1866 0.1867 0.1799
yeast 1484 8 0 0.0721 0.0917 0.0689 0.0740 0.0671 0.0683 0.0928 0.0680
zoo 101 1 15 0.2892 0.2832 0.1835 0.1518 0.2860 0.1502 0.3637 0.1478

Table 10: Mean absolute errors of imputation methods on 84 data sets from the UCI Machine Learning
repository with 30% missing values. The lowest MAE for each data set is indicated in bold.
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